

    
      Navigation

      
        	
          index

        	
          next |

        	Axe 0.0.1 documentation 
 
      

    


    
      
          
            
  
Welcome to Axe

Welcome to Axe’s documentation.


User’s Guide



	Quickstart
	A Minimal Application

	Debug Mode

	Routing

	Static Serve

	Template

	Dependency Injection

	Redirects and Errors

	About Response

	Sessions

	Logging

	Scale Application





	Extensions
	Extensions as View Function arguments

	Sharing an extension across view functions

	Chain

	Modularity

	Default Extensions





	Grow
	Extension

	Proxy















          

      

      

    


    
         Copyright 2014, soasme.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Axe 0.0.1 documentation 
 
      

    


    
      
          
            
  
Quickstart

This page gives a good introduction to Axe. You should have Axe installed first.


A Minimal Application

A minimal Axe application looks something like this:

from axe import Axe
app = Axe()

def index():
    return 'Hello World!'

urls = {
    '/': index,
}
app.build(urls)

if __name__ == '__main__':
    app.run_simple(host='127.0.0.1', port=8384)





You can save it as hello_world.py:

$ python hello_world.py





Now go to your browser and visit http://127.0.0.1:8384/,
and you should see Hello world! in your screen.

To stop the server, hit Ctrl-C.

WARNING: run_simple is for local development. It’s strongly recommend
not to use in production environment.




Debug Mode

If you pass use_debugger=True parameter to run_simple,
You will have an excellent debug stacktrace when the page occur error:

app.run_simple(use_debugger=True)





If you pass use_reloader=True parameter to run_simple,
the server will auto restart whenever a file modified:

app.run_simple(use_reloader=True)





More information about run_simple, see
Werkzeug Documentation of run_simple [http://werkzeug.pocoo.org/docs/serving/#werkzeug.serving.run_simple]




Routing




Static Serve




Template

It’s you choice to use which template engine: Mako, Plim, Haml, Jinja, etc.
There is no default template engine now.




Dependency Injection

The route controller functions always have many dependencies: query, form, json,
headers or any other specific of you project. But it’s hard to debug if you
attach too much values in one request object. Here is the solution of Axe:
DI(Dependency Injection). List all the dependencies as parameter in controller
function, and happy to use them. We call these dependencies as extension in Axe.
There are several default extensions like query, json, form, headers,
request, method.  But Axe enable you to write your own extensions.




Redirects and Errors

Use axe.redirect to direct the page:

from axe import redirect, ext

@ext
def require_login(session):
    if not session:
        return redirect('/login')

def index(require_login):
    return template('index.html')

def login():
    return template('login')

app.build({
    '/': index,
    '/login': login,
})





Use axe.error to define the error action:

from axe import error

@error(404)
def not_found(exc):
    return template('not_found.html')








About Response




Sessions




Logging




Scale Application

When your project becomes big, it’s better to split it into several small projects.
Axe allow you to assemble several WSGI application together when needed:

from MyVanillaApiV1 import v1
from MyVanillaApiV2 import v2
from MyVanillaWeb import web
app = Axe()
app.proxy({
    '/api/1': v1,
    '/api/2': v2,
    '/': web,
})











          

      

      

    


    
         Copyright 2014, soasme.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Axe 0.0.1 documentation 
 
      

    


    
      
          
            
  
Extensions

The purpose of Axe extensions is to provide a readable
baseline which makes view function can reliably and
transparently execute. Axe extension mechanism offer
dramatic improvements over attaching values with
global context.


	Extensions have explicit names and are activated only
when need it.

	Each extension name triggers an extension function
which can itself use other extensions.




Extensions as View Function arguments

View functions can receive extension objects by naming
them as an input argument. For each argument name, an
extension function with that name provides the
extension object. After initialize Axe app, app = Axe(),
Extension functions as registered by decorating them
with @app.ext. Let’s look at a simple self-contained
Axe app containing a customized extension:

from axe import Axe
import os
app = Axe()

@app.ext
def config():
    return {'system': os.name}

def index(config):
    return config.get('system', 'Unknown')

app.build({'/': index})

if __name__ == '__main__':
    app.run_simple()





Here, the index view function needs the config
extension value. Axe app will discover all the
extensions that registered to it and call the
@app.ext marked config extension function.
Running this example, and visit ‘/’:

~ % curl http://localhost:8384
posix





You might got a different result, but that’s trivial.
Here is the exact process executed by Axe to call
view function this way:


	curl make a request of ‘/’, and Axe app route ‘/’ to
index view function.

	index view function needs a function argument
named config. A matching extension is discovered
by looking for an extension-decorated function
named config.

	config() is called and return a dict result.

	index({‘system’: ‘posix’}) is actully called
and the rest is view function logic: get key
system in config dict as response body.



Note that if you misspell a function argument or want
to use one that isn’t available, you will see an error
axe.errors.UnrecognizedExtension before app running,
alas, the app is failed to start.




Sharing an extension across view functions

The extension can be applied into all view functions
that is built by app.build. Multiple view functions
after building will each receive the same extension
function, and build it within every request.




Chain

You can not only use extensions in view functions but
extension functions can use other extensions themselves.
Here is a default extension json offered by Axe:

@app.ext
def json(headers, body):
    content_type = headers.get('Content-Type')
    if content_type != 'application/json':
        return
    data = body.decode('utf8')
    try:
        return json.loads(data)
    except ValueError:
        raise BadJSON





Note that avoid writing circular dependency for
extensions.




Modularity

You might got mad by writing many input parameters in a
view function. As we have ability to chaining extensions,
Here is a simple example for you to extend the previous
config example. We instantiate an object exts where
we stick the already defined config resource into it:

class Exts(object):
    def __init__(config):
        self.config = config

@app.ext
def exts(config):
    return Exts(config)

def index(exts):
    return exts.config.get('system')








Default Extensions


Query

query extension return a dict object that contains key-value map from querystring
like /hello?name=world. Default value is {}. Example:

def hello(query):
    return query.get('name', '')








Form

form extension return a dict object that coming from form submitted from form.
Default value is {}, Example:

def comment(form):
    Comment.create(form['email'], form['name'], form['content'])








Body

body extension return a string which composed request body. Example:

def resp_body(body):
    return body

$ curl http://localhost:8384/resp_body -d "This is body."
This is body.








Cookies

cookies extension return a dict object that is parsed from header
HTTP_COOKIE.




Headers

headers extension return a dict object that is parsed from request headers.
Example:

@app.ext
def auth(headers):
    token = headers.get('Authorization', '')
    if not (token.startswith('Bearer ') and Token.verify(token)):
        raise InvalidAuthorationToken(token)
    return Token.get_user_from_token(token)








JSON

json extension return a dict object only if there is request header
Content-Type: application/json with request body in legal JSON encoding.
If body is not in valid JSON format, Axe will response 400 Bad Request.
Default value is None.:

def share(json, auth):
    if 'facebook' in json:
        share_to_facebook(auth, json['content'])
    if 'twitter' in json:
        share_to_twitter(auth, json['content'])
    return 204








Method

method extension return a word in upper case, choices: (GET, POST, DELETE, PUT,
OPTIONS, HEAD).









          

      

      

    


    
         Copyright 2014, soasme.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Axe 0.0.1 documentation 
 
      

    


    
      
          
            
  
Grow

Here are your options when growing your codebase or scaling your application.


Extension

It’s a good idea to write your awesome extensions. Axe is just a skeleton, it’s
your choice to inject which kind of soul.




Proxy

Split an enormous codebase into several small and delicate codebases. It’s good
to keep codebase in a proper size. You may run many progresses and use server
applications, like Nginx, Apache, to dispatch request to the right process. Or
you might want them to work in the same progress: just combine them by the proxy
method into a larger one based on prefix. See Scale Application.







          

      

      

    


    
         Copyright 2014, soasme.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	Axe 0.0.1 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2014, soasme.
      Created using Sphinx 1.2.2.
    

  search.html


    
      Navigation


      
        		
          index


        		Axe 0.0.1 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2014, soasme.
      Created using Sphinx 1.2.2.
    

  

_static/minus.png





_static/down.png





_static/file.png





_static/ajax-loader.gif





_static/comment.png





_static/down-pressed.png





_static/up-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/up.png





_static/plus.png





